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ABSTRACT

A new variant is proposed for calculating functions empirically and orthogonally from a given space–time
dataset. The method is rooted in multiple linear regression and yields solutions that are orthogonal in one
direction, either space or time. In normal setup, one searches for that point in space, the base point (predictor),
which, by linear regression, explains the most of the variance at all other points (predictands) combined. The
first spatial pattern is the regression coefficient between the base point and all other points, and the first time
series is taken to be the time series of the raw data at the base point. The original dataset is next reduced; that
is, what has been accounted for by the first mode is subtracted out. The procedure is repeated exactly as before
for the second, third, etc., modes. These new functions are named empirical orthogonal teleconnections (EOTs).
This is to emphasize the similarity of EOT to both teleconnections and (biorthogonal) empirical orthogonal
functions (EOFs). One has to choose the orthogonal direction for EOT. In the above description of the normal
space–time setup, picking successive base points in space, the time series are orthogonal. One can reverse the
role of time and space—in this case one picks base points in time, and the spatial maps will be orthogonal. If
the dataset contains biorthogonal modes, the EOTs are the same for both setups and are equal to the EOFs.
When applied to four commonly used datasets, the procedure was found to work well in terms of explained
variance (EV) and in terms of extracting familiar patterns. In all examples the EV for EOTs was only slightly
less than the optimum obtained by EOF. A numerical recipe was given to calculate EOF, starting from EOT as
an initial guess. When subjected to cross validation the EOTs seem to fare well in terms of explained variance
on independent data (as good as EOF). The EOT procedure can be implemented very easily and has, for some
(but not all) applications, advantages over EOFs. These novelties, advantages, and applications include the
following. 1) One can pick certain modes (or base point) first—the order of the EOTs is free, and there is a
near-infinite set of EOTs. 2) EOTs are linked to specific points in space or moments in time. 3) When linked
to flow at specific moments in time, the EOT modes have undeniable physical reality. 4) When linked to flow
at specific moments in time, EOTs appear to be building blocks for empirical forecast methods because one can
naturally access the time derivative. 5) When linked to specific points in space, one has a rational basis to define
strategically chosen points such that an analysis of the whole domain would benefit maximally from observations
at these locations.

1. Introduction

Empirical orthogonal functions (EOFs) have been in
widespread use in meteorology and climatology for a
few decades (Lorenz 1956; Gilman 1957) and their use
still seems to be on the increase. We here present a
particularly simple way to calculate functions, empiri-
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cally and orthogonally, without these functions being
traditional EOFs. In words, this method is as follows.
Suppose we have a space–time dataset T(s, t). One can
search for that point in space (sb; a ‘‘base’’ point) that
explains the maximum of the variance of all points com-
bined. What is explained by T(sb, t) is removed from
T(s, t) by standard regression, and one can then search
the reduced data for the next most important point in
space, and so on. The spatial patterns are regression
coefficients from sb to the other points s, and the time
series are the T(sb, t) at the base point. We will refer to
the resulting functions as empirical orthogonal telecon-
nections (EOTs). EOTs are orthogonal in one direction;
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FIG. 1. (top) Contours of the fractional domain variance of seasonal
mean 700-mb height in winter (DJF) explained by time series at single
grid points over 1948/49–1997/98. Unit %, contour interval 2%, shad-
ing for values $6%, darker shading for values $10%, and darkest
shading for values $14%. The domain is from 208N to the North
Pole. (bottom) The interannual standard deviation of seasonal mean
700-mb height in winter. Units are gpm, contour interval is 5 gpm,
shading for values $20 gpm, with darker shading for values in excess
of 40 gpm. Data source: NCEP–NCAR reanalysis 1948/49–1997/98.
Note added in proof: Values in the bottom panel are too low by 1.2;
i.e., 20 gpm should read 24 gpm.

one has a choice of space or time as the orthogonal
direction. From the examples to be given below, EOTs
do look very much like EOFs for some commonly stud-
ied datasets and even more like regionalized ‘‘rotated’’
EOFs (Horel 1981; Richman 1986; Barnston and Liv-
ezey 1987, hereinafter BL). The relationship between
EOF and EOT will be laid out formally. In many re-
spects EOTs are like one-point correlation or ‘‘telecon-

nectivity’’ maps (Wallace and Gutzler 1981, hereinafter
WG), but with the added property of orthogonality and
functional representation. Although EOT can hardly be
a ‘‘new’’ method, the authors have not found any ref-
erences to it in our field.

Examples will be detailed in section 3, but, to start,
Fig. 1 shows the interannual standard deviation of ex-
tratropical Northern Hemisphere (NH) seasonal mean
700-mb height for winter (gpm; Fig. 1b) and contours
of the fraction of variance of the whole field that can
be explained by each grid point individually (%; Fig.
1a). Each grid point obviously explains itself in full
(K1% domain variance) plus a bit of the nearby area,
but some grid points (or observations) tell a lot more
about the rest of the hemisphere than others. In the
Atlantic and Pacific basins we have several areas where
single points can explain no less than 15%–20% of the
variance of the entire domain. Connoisseurs will im-
mediately see the Pacific–North American pattern
(PNA) and the North Atlantic Oscillation (NAO) emerg-
ing in Fig. 1a. The first base point sb to be picked would
be near Greenland and the first EOT mode (tethered to
408W, 708N) explains 20.5% of the variance. The areas
of high standard deviation and high explained domain
variance have some correspondence, but the relationship
is far from being 1 to 1, notable exceptions being for
instance Florida (low std dev, but very high domain
EV) and the Atlantic along the line Newfoundland–
Scandinavia (high std dev, but low domain EV).

The EOT method is explained and defined in section
2. The method and interpretation of EOT are the main
subject of this paper. Some examples are given and brief-
ly discussed in section 3, with conclusions and a dis-
cussion of possible applications in section 4.

2. The method

Suppose we have a discrete space–time (s, t) dataset
T(s, t), 1 # t # nt and 1 # s # ns, where T denotes
the variable (like height, pressure, streamfunction, etc.).
EOT is a stepwise linear regression, where the predic-
tands are the T(s, t), and the predictors are T(s, t) as
well. One can search all s for that point in space (sb; a
base point) that explains the most of the variance at all
other points (including itself ) combined. What is ex-
plained by T(sb, t) is removed from T(s, t) by standard
regression, and one can then search the reduced data for
the next most important (in terms of variance explain-
ing) point in space. And so on. Eventually one obtains
T(s, t) 5 S am(t)em(s), where the a’s are time series and
the e’s are spatial patterns, and the summation is over
mode m 5 1, …, ns. The description so far is for a
‘‘normal’’ space–time setup, detailed immediately be-
low (section 2a), but an analogous calculation with
space–time coordinates reversed follows in section 2b.
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a. Normal setup

In the normal setup the idea is to find, by brute force,
that point (sb) in space that explains as much as possible
of the variance of all other points. The first EOT is
connected in full to this point sb, denoted as sb1, in the
sense that the space pattern of the first mode [e1(s)] is
the regression coefficient between T at sb1 and T at all
other points s, and the time series [a1(t)] of the first
mode is the time series of the original data at point sb1,
that is, T(sb1, t). [The field e1(s) is a very close cousin
to a so-called teleconnectivity map for base boint sb1;
see WG.] At this point we split the original data into
an ‘‘explained’’ and a ‘‘reduced’’ part:

explT (s, t) 5 a (t)e (s) for all s and t1 1

reduced explT (s, t) 5 T(s, t) 2 T (s, t) for all s and t,

where

e (s) 5 cor(s, sb )[std dev(s)/std dev(sb )],1 1 1

a (t) 5 T(sb , t)1 1

std dev(s) stands for the temporal standard deviation of
T(s, t) at point s defined as

1/2nt1
2std dev(s) 5 T(s, t)O[ ]nt t51

and the temporal correlation is defined by

nt1
cor(s1, s2) 5 T(s1, t)T(s2, t)O[ ]nt t51

4 [std dev(s1)std dev(s2)].

Note that in the last two expressions the time mean has
not been removed. Nevertheless, the usual 21 #
cor(s1, s2) # 11 does hold. The e1(s) is a regression
coefficient as defined in ‘‘regression through the origin’’
(Brownslee 1965, p. 358). The time–space or domain
variance to be explained is given by

nt ns1
2STVAR 5 T(s, t) .O O

ns nt t51 s51

The expression is valid only for datasets that are ‘‘equi-
distant’’ in time and space. If this is not the case, on a
latitude–longitude grid, for instance, one has to use
weights [such as cos(latitude)] multiplying T(s, t)2.

At this point we loop around for the second mode,
which is identically the same procedure except we start
with the once-reduced T(s, t). (The successive data re-
duction is the equivalent of using partial correlation; see
section 4.) With all modes calculated we have:

M

explT(s, t) 5 ;T (s, t) 5 a (t)e (s), (1)O m m
m51

where am(t) 5 T reduced(sbm, t), sbm is the mth base point,
T reduced is T after m 2 1 reductions, and em(s) 5

cor(s, sbm)[std dev(s)/std dev(sbm)], with the under-
standing that cor and std dev are calculated from the
(m 2 1) times–reduced data. There is a 1–1 linkage
between the ordered base points sbm and the modes m
5 1 to M. The maximum value for m is ns, at which
point T expl(s, t) 5 T(s, t) and T reduced(s, t) 5 0. When
searching for sbm the number of reductions applied to
T(s, t) is m 2 1. Last, the variance explained by m modes
as a percentage of STVAR is given by

nt ns1
expl 2EV(m) 5 T (s, t) /STVAR(100).O O

ns nt t51 s51

In the jargon of EOF literature, the EOTs are the result
of a ‘‘covariance-based’’ calculation. The modes explain
successive nonoverlapping portions of the variance,
which implies orthogonality in the domain in which the
correlation and standard deviation are calculated, that
is, here: the time domain, that is, St am(t)an(t) 5 0 for
n ± m.

The order in which the successive points sb are se-
lected is arbitrary. Selecting points in order of explain-
ing the most (remaining) variance makes sense as a
matter of efficiency. Otherwise the order is free for EOT.
If one choses a certain point first (‘‘forces it in’’) all
subsequent modes and time series will change, but in
the end (1) is satisfied just as precisely. If one insists
on retaining all local information at one or more specific
locales, one needs to force those particular points in
before truncation. Indeed, with orthogonality in only
one direction (here: time), the methodological con-
straints are very weak, and there is a virtual infinity of
possibilities to satisfy (1).

Note that em(s) is a nondimensional quantity (a re-
gression coefficient, of order 1), while am(t) carries the
units of the input dataset.

b. Space–time reversal

Although there is no more to space–time reversal than
interchanging the role of the s and t coordinate, re-
versing space and time does require some attention. To
define what we mean, first look at some of the previously
given equations with time and space ‘‘reversed’’:

T reduced(s, t) 5 T(s, t) 2 a1(s)e1(t),

where

e (t) 5 cor(t, tb)[std dev(t)/std dev(tb)]1

a (s) 5 T(s, tb1),1

std dev(t) now stands for the spatial standard deviation
of T at time t, that is,

1/2ns1
2std dev(t) 5 T(s, t)O[ ]ns s51

and
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ns1
cor(t1, t2) 5 T(s, t1)T(s, t2)O[ ]ns s51

4 [std dev(t1)std dev(t2)].

Spatial means are not subtracted in the two above ex-
pressions. Last, one obtains

nt

T(s, t) 5 a (s)e (t). (1a)O m m
m51

Instead of a base point in space (sb), we now have a
base point in time (tb), the es are a function of time,
and the orthogonal as are a function of space. The first
time–space-reversed EOT spatial pattern is thus the field
T(s, tb) that explains the most of the fields observed at
other times. As far as notation is concerned, note that
unless stated otherwise am(s) or em(t) will automatically
imply time–space-reversed calculations, while am(t) and
em(s) are used for the normal setup. The am are or-
thogonal in either setup. Just as in the normal setup the
em(t) is a nondimensional quantity (regression coeffi-
cient), while am(s) carries the units of the input data.
As was the case with (1), there is a virtual infinity of
ways to satisfy (1a). One can chose any realization
T(s, tb) first, and proceed from there.

c. Standardization

The reversal brings the issue of standardization into
some focus. Even if the input data is standardized in
time, the spatial mean will not be zero at all times (es-
pecially on a small domain), nor will the spatial standard
deviation be unity at all times. Given the EOT method
as defined, there is no need to standardize data, neither
in time or space. One may still want to do this, but a
procedure based on the above will succeed regardless,
and adhere to (1) or (1a). The correlation, variance, and
covariance in either setup are all calculated without re-
moval of sample means, and STVAR is identically the
same in the normal setup and space–time-reversed cal-
culation. If there is a nonzero mean component in the
data (along either coordinate), it will be expressed in
one or more of the EOT. Some further comments will
be made in section 4.

d. Formal connection to EOF

For regular EOF there is a unique expression of the
form

M

T(s, t) 5 a (t)e (s),O m m
m51

where M is the smaller of (ns, nt), and am(t) and em(s),
both orthogonal, are such that

2M9

Q(M9) 5 T(s, t) 2 a (t)e (s)O O O m m[ ]s t m51

is minimized for all M9 , M. Furthermore, the following
identities hold:

a (t) 5 e (s)T(s, t) e (s)e (s) (2a)O Om m m m@
s s

and

e (s) 5 a (t)T(s, t) a (t)a (t). (2b)O Om m m m@
t t

The biorthogonality is much more constraining, and as
a result there is only one set of EOFs, not the near-
infinite freedom associated with EOTs (1) or (1a). Still,
the one and only difference with respect to EOF we
make in the EOT method (normal setup) is that am(t)
is required to be the time series of T at one specific
observational site (or gridpoint) sb, T(sb, t), rather than
a more general linear combination over s: S b(s)T(s, t),
where b(s) are weights for each grid point. Is this a big
departure from EOFs? It depends on the nature of the
dataset, of course. From Barnston and van den Dool
(1993a) we know that the time series associated with
regular EOFs (in monthly 700-mb height) correlate with
T(s, t) in excess of 0.8 at certain locations; that is, b(s)
is large at what amounts to a base point. Hence EOT
is already somewhat close to EOF for these datasets,
and the degree of similarity increases further after ro-
tation (BL), when local correlations increase to .0.9.

In t–s reverse setup, the one and only difference with
respect to EOF we make in the EOT method is that
am(s) is required to be the spatial pattern of T at one
specific time tb, rather than a more general linear com-
bination over t: S b(t)T(s, t). For traditional EOFs the
t–s reversal is only a technical issue (of computer mem-
ory)—the answers are the same either way (although
standardization issues need to be addressed).

If the em(s) were known, am(t) could be calculated
from (2a), and if am(t) were known the em(s) could be
found from (2b). For EOT in normal setup only (2b) is
true, while only (2a) holds for space time reversal [but
note that in the notation of section 2b, Eq. (2a) would
read: em(t) 5 S am(s)T(s, t)/S am(s)am(s)]. Neverthe-
less, (2a) and (2b) will be referred to in section 3 and
the appendix in the EOT context—because it can be
shown that given the EOT solutions one can iterate very
rapidly toward a traditional EOF solution that satisfies
both (2a) and (2b).

3. Examples

One can very easily write a code (just a few dozen
lines, no library routines needed) to calculate EOT. We
tested it out on four commonly used datasets.

a. Data

1) January mean temperature in the United States, at
102 evenly distributed climate divisions (CDs) for
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TABLE 1. Cumulative explained variance by the EOT method as a
function of mode for the four datasets indicated in the headers. Space–
time reversal is applied where indicated. The numbers in parentheses
in column (1) refer to traditional covariance-based EOF analysis.

Mode

1
Monthly
T-Jan US

1a
Monthly
T-Jan US

(t–s
reversed)

2
Monthly

w-May US
(t–s

reversed)

3
Seasonal
Z700 NH

4
Daily
Z500

NH
(t–s

reversed)

1
2
3
4
5
6
7
8
9

10

37.5 (38.7)
68.1 (73.0)
77.8 (85.2)
84.0 (88.8)
86.3 (91.7)
88.7 (93.5)
90.6 (94.5)
91.9 (95.3)
92.8 (95.9)
93.7 (96.4)

36.6
70.2
80.7
85.4
88.1
89.9
91.1
92.1
93.1
93.7

20.6
34.0
43.9
51.4
56.0
59.4
52.4
65.2
67.7
70.0

20.5
37.4
46.5
54.2
61.2
66.6
71.4
75.4
78.5
81.2

7.5
13.8
20.0
24.6
28.8
32.8
36.3
39.4
42.2
44.9

.
50 85.1
.

64 (100) 100 100
.

102 100
.

504 100
.

1500 100

1932–95. The original data source is the National
Climatic Data Center (NCDC), but the mapping onto
102 CDs is described in He et al. (1998). The time
mean is made zero pointwise in space, and stan-
dardized units are used for this dataset.

2) May soil moisture in the United States, at 102 evenly
distributed climate divisions for 1932–95. The time
mean over 1961–90 is subtracted, and the units are
millimeters. See Huang et al. (1996) as a source and
references thereof as a source for dataset 1 as well.

3) December–February (DJF) seasonal mean 700-mb
heights, for 208–908N, 1948/49–1997/98 based on the
National Centers for Environmental Prediction–Na-
tional Center for Atmospheric Research reanalysis
(Kalnay et al. 1996) on a 58 lat 3 108 long grid, and
a square root cosine (of latitude) weighting applied to
the anomalies at the 504 grid points so as to properly
integrate variance on the sphere (no equal area grid
needed). The 50-yr winter mean is subtracted, and the
units for the anomalies are geopotential meters.

4) Daily 0000 UTC 500-mb height for January, other
details as in dataset 3.

These four datasets cover a wide range of situations
in terms of domain size or spatial degrees of freedom,
the number of points in space and in time and their
ratio, standardization, time and or space mean being
zero or not, etc. We will discuss EV for each of these
datasets, but will present selected graphics for datasets
1 and 3 only, to make the more salient points. Results
for datasets 2 and 4 are for space–time-reversed mode
exclusively. Direct comparison of the normal setup and
space–time reversal is discussed for dataset 1 only.

b. Explained variance (EV) for each dataset

First we discuss the example of January mean tem-
perature during 1932–95 (64 cases) over the contiguous
United States at 102 CDs. The explained variance profile
is very satisfactory in this situation (see Table 1, column
1). Three modes is enough for 75% EV, and seven modes
explain 90%. A total of 102 modes (5all points in space)
make up the full 100%. Column 1a refers to EOT for
the same dataset, but now under time–space reversal.
The numbers in parentheses in column 1 refer to co-
variance based EOF (which were calculated with the
recipe given in the appendix). Traditional EOF has only
1%–4% more EV than the greater of columns 1 or 1a.
On this dataset EOT is thus quite close to maximizing
EV. Column 2 is for soil moisture in May, a far more
challenging field for effective representation by any
function because of the spotty nature of soil moisture
anomalies. Nevertheless, in time–space-reversed mode
it takes only four EOT modes to explain 50% of the
variance. Columns 3 and 4 are for seasonal mean 700-
mb height and daily 500-mb height, respectively, both
on a much larger extratropical Northern Hemispheric
domain. On this large domain, EOT appear to be equally

satisfactory in explaining the variance. It takes only four
modes to explain 50% of the variance in seasonal mean
700-mb height—for daily 500-mb height it takes 13
modes to accomplish the same.

Columns 1 and 1a compare EV for the same dataset
but for a normal setup versus for space–time reversal.
It turns out that the same total space–time variance is
broken up in a roughly equally efficient way. In time,
the neighboring years are not especially correlated with
tb, at least not in the way the grid point sb is with its
neighbors, hence the first EOT is slightly more efficient
in normal time–space setup. However, beyond the
monopole positive neighbor connection, the telecon-
nections (especially negative correlation) are stronger
in time, and the reverse EOT is actually more efficient
for modes 2, 3, etc., up to 3% EV. Apart from these
differences, the normal and space–time reverse setup
are basically the same. In t–s reverse mode the full 100%
EV is reached with 64 modes (the number of time
levels), instead of 102 modes in the normal setup. Fun-
damentally, a distribution of the variance across 64
modes can never be identically the same on a mode-to-
mode basis as a distribution across 102 modes {unless
the modes are orthogonal in both time and space [in
which case the modes beyond 64 (the smallest dimen-
sion) are degenerate]}.

c. Time series and spatial patterns: January mean
temperature in the United States 1932–95
Figure 2 shows e1(s) and e2(s), two broadscale pat-

terns suggesting frequent occurrence of temperature
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FIG. 4. Time series of the first 2 EOTs, e(t) 3 100, for Jan mean
temperature 1932–95 over the United States, resulting from a space–
time-reversed setup. The full line, for the first mode, reaches 100 in
1977, while the dashed line, for the second mode, reaches 100 in
1937. Units are dimensionless, the e(t) being a regression coefficient
of order 1.

FIG. 5. Comparison of time series for first EOT calculated under
time-reversed [full line; e1(t) 3 100; units dimensionless regression
coefficient] and space–time-reversed setup [dashed line; a1(t) 3 100;
units standardized anomalies].

standardized anomaly fields of one sign covering about
75% of the east (west) with opposing anomalies in the
west (east). The e(s) are maps of a regression coefficient
with the base points in west Kentucky (e1) and east
Wyoming (e2), respectively. The e(s) are not orthogonal
by construction, but in fact they very nearly are for this
dataset. The alternative spatial patterns a1(s) and a2(s),
calculated orthogonally under space–time reversal are
shown in Fig. 3. While the scale differs (std dev units
3 100 in Fig. 3), one may observe Figs. 2 and 3 to be
rather similar. The spatial mean in Fig. 3 is very much
nonzero and taking out the spatial mean (as would be
required in standardization) would have made it im-
possible to find this pattern. In Fig. 4 we provide the
time series e1(t) and e2(t) associated with the a(s) in
Fig. 3—checking for the t such that e(t) equals 100
brings out that a1(s) is the January 1977 field, while
a2(s) is the January 1937 temperature (after the Jan
1977 has been regressed out). These two years feature
very large anomalies (.3 std dev units)—a high signal-
to-noise ratio is a necessary but not sufficient condition
for making these flow realizations suitable to explain
other years. Note also that Fig. 4 displays considerable
low-frequency variability. Finally, Fig. 5 compares e1(t)
and a1(t). As was true for e1(s) and a1(s) (Figs. 2 and
3, top panels), the time series of the leading mode is,
except for the sign and units, nearly identical in normal
setup and space–time-reversed mode. Remarkably, the
raw time series at one point, west Kentucky, tells us
nearly the same (about the whole time–space domain)
as a single field in 1977. When normal and t–s reverse
calculation yield the same result, as they do here very
nearly for the top modes, the EOT are orthogonal along
both coordinates and EOFs and EOTs become the same,
not by definition but because the data dictates that result.

d. Spatial patterns: Winter mean 700-mb height over
the Northern Hemisphere 1948/9–1997/8

Many of the comments made in section 3c, pertaining
to U.S. monthly temperature, could have been made as
well for seasonal mean 700-mb height over the extra-
tropical Northern Hemisphere. Therefore let us discuss
the results for this field in a somewhat different way
emphasizing other aspects briefly. Figure 6 shows the
first four EOT modes in normal setup, cor(s, sb) rather
than e(s), to be visually consistent with the literature,
BL in particular. As announced when presenting Fig. 1,
one recognizes instantly the usual suspects, the NAO
and PNA, and indeed, these modes, explaining 20.5%
and 16.8% of the domain variance, appear as modes 1
and 2. These modes are very nearly orthogonal in both
time and space—this has to be a result dictated by the
data because the method requires orthogonality in one
direction only. Subsequent modes explain much less
variance. Although concentrated in the Atlantic Euro-
pean area, these higher EOTs still display sweeping pat-
terns with negative correlation at large (tele) distances.
The NAO and PNA are truly outstanding and virtually
independent (in linear correlation sense) operating
modes—only near the line from Florida into west central
Canada do these modes overlap, but the competition for
the same variance is minor. To prove this we forced the
PNA to be mode 1 by picking sb 5 458N, 1608W first,
but, except for the order of the upper two, the four panels
in Fig. 6, representing NAO and PNA, changed very
little. Although the NAO is represented here by 758N,
408W, one could have picked several other points near
Greenland, a southern point over the Atlantic or in Cen-
tral Europe (see Fig. 1), and still be quite efficient in
representing the NAO.

Figures 7 and 8 are the counterpart of Fig. 1’s bottom
and top, that is, the standard deviation and pointwise
domain variance explained, after subsequent modes
have been removed. After removal of NAO and PNA
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FIG. 6. The first four EOT modes for seasonal mean (DJF) 700-mb height based on NCEP–NCAR reanalysis 1948/49–1997/98. Shown
is cor(s, sb) 3 100 for sb1 to sb4 at the base points indicated in the top of each panel. The cor(s, sb) is calculated from reduced data, for
modes 2, 3, and 4. The explained variance (EV) given at the top is expressed as a fraction of the original domain variance. Contour interval
is 20, light shading for negative values ,220 and dark shading for positive values .20.

the domain variance explained (Fig. 8) has quickly be-
come rather flat in space (compared to Fig. 1 top) with
peak values of 6%–7% only, and the choice of the next
mode does not suggest itself very strongly. The re-
maining standard deviation (Fig. 7) is not flat at all—
some locations have retained most of their variance after
four modes are out (and .50% of the domain variance
is out), for instance, over Scandinavia, west of Alaska,
and off the Washington and British Columbia coast.
Even though Florida and surroundings participate in
both NAO and PNA, there is some 40% variance left
after these modes are removed. One can very clearly
see the ‘‘holes drilled’’ in the std dev map (Fig. 7) at
the locations of subsequent sb, where the remaining std
dev is zero.

e. Noise, sampling variability, and reproducibility

EOT and EOF are based on full sample correlations,
and as such subject to sampling variability and obser-
vational error. The EOTs have an especially obvious
noise component: by accepting the ‘‘raw’’ time series
T(sb, t) or the map T(s, tb) in full, this error becomes
part of the EOT mode along the orthogonal direction.
For instance, in Fig. 3, we have displayed the first two
a(s) modes, which are in fact the observed temperature
maps for January 1937 and 1977, and one may feel that
the wiggly lines in the west of the United States are due
to noise or undersampling. Some noise can also be sur-
mised in Fig. 7 where the remaining standard deviation
after removal of subsequent modes leaves small holes,
suggesting that the time series at sb contains gridpoint
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FIG. 7. The remaining interannual std dev of seasonal mean 700-mb height in winter, based on NCEP–NCAR reanalysis 1948/49–1997/
98, after removal of modes 1; 1 and 2; 1, 2, and 3; and 1, 2, 3, and 4. Units are gpm. The raw field (no modes removed) is shown in Fig.
1, bottom. Contour interval is 5, shading for values $20 gpm, and darker shading for values $40 gpm.

specific variance, which does not correlate very far. This
problem could be reduced in ad hoc fashion by some
smoothing in space around the point sb before the da-
taset is reduced; see appendix for more on this issue.
On the other hand, the upper panel of Fig. 1 shows
robustness in the domain variance explained—the base
points picked represent a rather large area, and moving
the base point around is neither going to change the EV
nor the appearance of the mode very much. Further-
more, e(s) in Fig. 2, a regression coefficient (not raw
data), seems much more smooth, in line with what we
have come to expect (rightly or wrongly) of modes:
round and smooth. Apparently, EOT has the noise pri-
marily along one axis, the orthogonal direction.

The presence of noise as well as sampling variability
(given finite samples) raises the issue of reproducibility
on independent data, an issue addressed by North et al.

(1982) for regular EOF. We study the problem for Jan-
uary mean temperature (dataset 1) by doing the follow-
ing cross validation (CV). We left 1 year out and cal-
culated M modes from the 63 remaining years. The field
observed in the year left out was then projected onto
these modes and the EV for that year was calculated.
The projection requires ideally orthogonal modes so the
CV (leaving out 1 year at a time) was done in time–
space-reversed setup. The procedure was repeated for
all years exhaustively, and the EV was summed through
over all 64 yr. The result is shown in Table 2. We find
that the EV is reduced by only 1%–1.5%, a sign of
considerable robustness in the EOT method in terms of
its ability to explain variance. The largest difference is
about 1.6% in the range 10–20 modes, when about 95%
EV is reached. The columns on the right are for regular
EOFs, and we conclude that EOTs survive CV as well
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FIG. 8. The fraction of the original domain variance that can be explained by single grid points, after the removal of modes 1; 1 and 2;
1, 2, and 3; and 1, 2, 3, and 4. Compare to Fig. 1 (top)—no modes removed. Units: %, contour interval is 2, values $6 are shaded, while
darker shading applies to values $10 and 14%.

as, or slightly better than EOF, since the latter lose up
to 2% under CV; that is, although EOTs have an obvious
noise component, there is no evidence that EOTs contain
more noise than EOFs—the latter just partition the noise
more evenly along space and time axis so as to make
it less obvious. The calculation for EOT under CV per-
haps possesses a greater stability because the leading
modes (fields observed in 1937, 1977, 1950, etc.) do
not change one iota, unless one of these years them-
selves is withheld. Even if the order in which these years
are picked were to change, the appearance of the modes
may change completely, but a linear combination of the
leading years stays the same. We checked the above
conclusions on other datasets and found much the same.
For instance, while the loss in EV from full sample to

CV is more on the order of 10% for the soil moisture
dataset 2, the EOTs fare slightly better than EOFs.

A North et al. (1982) rule of thumb should probably
apply also; that is, the EOT pattern, in terms of its looks,
for mode M from a limited sample may not faithfully
represent the parent population if the uncertainty in EV
for mode M is on the order of the difference in EV for
subsequent modes. The uncertainty being 1%, modes
beyond 10 can certainly not be considered representa-
tive. The issue of appearance of modes is actually quite
different for EOT and EOF, because there is a near-
infinite number of ways to make a set of EOTs, while
EOFs are unique.

The saturation EV is obviously 100% for the full
sample size (64), while it is ;99% for the CV (for this
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TABLE 2. Variance explained by EOTs and EOFs of Jan mean
temperature as a function of the number of modes used. Column (1)
refers to using all years (64), a dependent data case. Column (2)
refers to cross validation, leaving out 1 yr at a time, a procedure
repeated 64 times.

No. of
modes

EOT

(1)
Dep

(N 5 64)

(2)
CV

(N 5 63)

EOF

(1a)
Dep

(N 5 64)

(2a)
CV

(N 5 63)

1
2
3
.
5
.

10
.

20
.

50

36.4
70.3
80.8

88.3

93.9

97.7

99.9

35.4
69.4
79.8

87.0

92.3

96.1

98.9

38.5
73.0
85.3

91.8

96.5

98.8

99.9

36.2
71.9
84.1

90.4

94.9

97.0

99.0

dataset). With saturation in sight (see Table 2), the ‘‘ad-
vantage’’ of dependent data over CV decreases because
(i) there is less left to be explained by subsequent modes
and (ii) the admission of an additional orthogonal basis
function (no matter how unstable) invariably increases
EV. The latter point was already made by North et al.
(1982); that is, even if orthogonal patterns are not re-
producible on independent data they still efficiently ex-
plain the variance.

It should be pointed out that under CV we restan-
dardized 64 times for sample size 63, and expressed the
year left out in terms of the climatology and standard
deviation of the reduced developmental sample. This
makes the variance to be explained in columns 1 and 2
of Table 2 slightly different—1.00 for the full sample
and 1.04 for the reduced sample. Failure to restandardize
creates an artificial connection between the year left out
and the remaining sample [of the sort described in van
den Dool (1987) and Barnston and van den Dool
(1993b)] and diminishes the independence of the year
left out for testing.

Leaving out only 1 yr may not seem like much, but
the neighboring years are not particularly correlated, so
each year is indeed an almost-independent realization.
Leaving out 3 or 5 yr at a time, and applying CV to the
center year of the group left out, leads to nearly identical
results. One can imagine CV with the normal setup as
well. In this case time series at certain locations are left
out, the modes are calculated from less than 102 loca-
tions, and so on.

4. Conclusions and discussion

We have defined and presented a simple method to
calculate functions, empirically and orthogonally, and
name them empirical orthogonal teleconnections
(EOTs). Given a space–time dataset T(s, t), we search
for that point in space (sb; a base point) that explains

the maximum possible of the variance of all points com-
bined. What is explained by T(sb, t) is removed from
T(s, t) by standard regression, and one can then search
the reduced data T(s, t) for the next most important point
in space. Eventually one obtains T(s, t) 5 S am(t)em(s),
where the as are time series and the es are spatial pat-
terns, and the summation is over mode m. The space
patterns are regression coefficients between point sb and
the other points s, and the time series are the raw data
time series at base point sb, T(sb, t). There is a 1-to-1
correspondence between modes m and the successively
chosen points sbm. By applying EOT to four commonly
used datasets we have shown by example that these
functions can indeed be calculated with minimal com-
plication and with good results both in terms of efficient
explanation of variance and in terms of producing fa-
miliar patterns. EOT are orthogonal in either time or in
space, not both (one has the choice). If orthogonality
in space is chosen, the role of points in space is taken
over by points in time. Most of the language above (and
below) is for the normal setup.

The present authors are not aware of any references
to EOT-like methods in our field. Certainly, EOTs, ex-
cept for many details, have much in common with the
Gram–Schmidt orthogonalization in linear algebra
(Pearson 1975). The EOT procedure has its roots in
regression, so many of the common approaches in re-
gression (forward, backward, retroactive pruning) to
come up with the shortest and most significant and ef-
ficient equations could be applicable here, but have not
been pursued.

EOTs are less constrained than EOFs by being or-
thogonal in just one direction (as opposed to two in
regular EOF). In this regard EOTs are like rotated EOFs
(REOFs). But note that EOTs are calculated in one step;
that is, one does not need to rotate anything, nor is there
a truncation point for rotation (O’Lenic and Livezey
1988).

In appearance, the leading EOTs look very much like
previously described (rotated) EOFs (BL), and telecon-
nection patterns (WG). The formal link to EOFs is pre-
sented (section 2d) and an iteration can be used to cal-
culate EOFs, given EOTs (see appendix). The link be-
tween EOT and traditional teleconnections (Namias
1981; WG) is obviously very strong as well. A (any)
WG or Namias teleconnection map is the same as a first
EOT (normal t–s setup) anchored to that base point. In
neither WG nor Namias (1981) was there any data re-
duction, and all teleconnections were derived from the
original full data. Hence, there was no orthogonality,
no explained variance notion, and no functional rep-
resentation as in (1).

It is hard to find a completely satisfactory name for
what we have here called EOT. We considered names
like ‘‘special’’ or ‘‘simple’’ EOF (SEOF—too vague) or
empirical normal modes [ENM—name exists already
for something else (Brunet 1994)]. Of course ‘‘simplic-
ity’’ is in the eye of the beholder, but anyone who knows
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multiple linear regression will understand EOT in that
framework rather easily. The route to EOFs via regres-
sion methods, as an alternative to the eigenproblem, is
not commonly used in meteorology, but certainly hinted
at in works like Kim and North (1998). The chosen
name EOT indicates that these new functions bridge the
gap between EOFs and teleconnections. While EOT is
very close to teleconnections, we should mention three
differences. First, teleconnections have not been con-
sidered with time and space reversed; only the search
for analogs and antilogs (van den Dool 1987) comes
close. Second, the WG teleconnections are picked for
remote robust negative correlations, while EOT derive
most of their variance-explaining capability from the
nearby positive correlations. Third, while teleconnec-
tions are calculated from raw data, EOT beyond the first
mode is calculated from reduced data.

The reason that EOF, EOT, and WG teleconnections
all come up with similar patterns (such as NAO and
PNA) is not the similarity in the basic tool used (linear
correlation). Nature is helping here by providing a few
modes that are in fact close to being biorthogonal.
Therefore, we will find these modes whether we use a
method that is constrained to be orthogonal in one
(EOT) or two directions (EOF). For the same reason we
will find these modes, whether we solve for them all at
once (EOF) or one after the other (EOT, teleconnec-
tions), removing the variance of the previous modes
(EOT) or not (WG teleconnections). Exactly why nature
has a few quasi-biorthogonal modes is not clear but
would be worthwhile to know.

Often, EOFs have been used to study low-frequency
variations. The time series based on EOT (see Fig. 4)
show various ups and downs over various timescales,
including interdecadal. There could be some concern
about the reality of trends in EOT time series being
affected by the methodological requirement that the time
series equals unity at some specific base time tb (1937
and 1977 in Fig. 4). While the correlation would be
maximum at tb, the regression coefficient need not be
(and regularly is not!) maximum. Also, if there is a real
trend, the base time should be very late or early in the
series. In Fig. 5 we compare the time series in regular
and reverse setup—while only the latter suffers from
the ‘‘forced’’ maximum, in 1977 the two time series are
nearly the same.

Some smaller details regarding EOT calculation (1–5)
to keep in mind are presented.

1) CPU time [0.4 s (Cray90, 1 processor, all modes)
for a 102 3 64 problem] is reduced by two-thirds
when using partial correlation; that is, rather than
recalculating the ns 3 ns correlation matrix explic-
itly from the reduced T(s, t) dataset, one can also
reduce the original correlation matrix directly by

cor(s1, s2 | sb)

cor(s1, s2) 2 cor(sb, s1)[cor(sb, s2)]
5 ,

2 2 1/2{[1 2 cor(sb, s1) ][1 2 cor(sb, s2) ]}

where cor(s1, s2 | sb) denotes the partial correlation
(Panofsky and Brier 1968) between T at points s1
and s2, given that the time series at sb has been
accounted for. Use of partial correlation is only for
CPU reduction.

2) As is, the es and as are not standardized as in being
orthonormal; that is, inner products like
S am(t)an(t)/nt for n 5 m are not unity. However, a
postprocessor could achieve that result.

3) EOT are covariance based. The switch to a corre-
lation-based EOT, as defined, is made by inputting
standardized data.

4) One has to choose time or space as the orthogonal
coordinate.

5) EOT is linked to specific points in time or space.
This statement is true in full only for the first mode.
For the mth mode, EOT is linked in full to the data
(at some point or time) that remains after removal
of m 2 1 previous modes; that is, beyond mode 1,
the linkage of modes to the raw input data may not
be so obvious, unless teleconnections in different
sectors of the domain are largely independent, which
we found to be true for the first two modes both for
U.S. January temperature and extratropical Northern
Hemisphere DJF 700-mb height.

We next list some special advantages (1–4) and pos-
sible further applications (1–4) of EOT.

1) In terms of (physical) interpretation (always a de-
batable issue with EOFs), EOT may offer advantag-
es. Some researchers may appreciate the linkage of
modes to specific sites because it keeps the orthog-
onal function close to time-honored indices (local
time series, really), such as are used for El Niño–
Southern Oscillation monitoring. A more theoretical
advantage is that the ‘‘effective spatial degrees of
freedom in space’’ (Bretherton et al. 1999) has some-
times been equated to N processes going on inde-
pendently at N points in space. Just where might
these evasive points be? EOT provides an answer.
For monthly temperature in January, west Kentucky
explains the most (;38% EV) of monthly mean tem-
perature around the United States, followed by east
Wyoming with 31%.

2) That EOT indeed gives more physical patterns can
best be seen under time–space reversal. In this case
the space patterns are actually observed fields, the
physical reality of which cannot be questioned (ex-
cept for observational/analysis noise). In this sense
EOT has an important advantage over EOF. With
time–space reversed one finds out that January 1977
explains most (37% EV) of the other years, followed
by January 1937 (January 1977 regressed out) with
34%. The first EOT of instantaneous fields actually
satisfies the full set of nonlinear governing equations.

3) One has the liberty to force certain modes (space–
time points, rather) in first. If one wants to see an
unadulterated version of the PNA as mode 1, one
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just forces sb 5 458N, 1608W in first. One can start
with any base point one wants or can let the order
of subsequent sb be determined by considerations
other than maximizing EV. EOT gives some freedom
that (R)EOF does not have.

4) Given the EOT method as defined, it is not necessary
to make the space or time mean zero a priori. One
may still have good reason to do this, but a procedure
based on the above will adhere to (1) or (1a). This
is a distinct advantage since simultaneous standard-
izing along both the time and space coordinate is
impossible, and, by not requiring standardization, the
same total variance is explained in the space–time
reversal option. The correlation, variance, and co-
variance are all calculated without removal of sample
means. If the sample mean is nonzero, it will be
explained by one or more EOTs.

These considerations play a role in real-time forecast
tools, where, following protocol, one intends to forecast
anomalies with respect to the 1961–90 ‘‘normal’’ but
also wants to use as much data as possible. For example
in the case of the May soil moisture data, dataset 2,
monthly data for 1932–95 minus the 1961–90 clima-
tology in units of millimeters was offered to the EOT
code. Neither the time nor the space means are zero,
but (1a) is valid to the last millimeter if enough modes
are admitted, and a forecast scheme automatically pro-
duces anomalies with respect to 1961–90.

We cannot claim that the standardization issue is
solved to satisfaction. One feature of the procedure we
have adopted is that the regression coefficient em , based
on a ‘‘regression through the origin’’ (Brownslee
1965), is sensitive to the distance to the origin. Con-
sequently, the appearance of modes will change when
a constant is added (such as would happen in con-
verting from 8C to K when time series have nonzero
mean—the multiplicative factor has no impact). How-
ever, this may be no worse than the change in modes
one gets by taking the mean out a priori. When using
regression with an intercept the mean comes out in full
along with mode 1.

Possible further applications 1–4: We here list pos-
sible applications other than the obvious ones pursued
in section 3. To some extent this is a list of future or
ongoing parallel work.

1) A promising application is the use of EOT in forecast
schemes. The use of EOF as a matter of efficiency
for (numerical) forecast models has long been con-
sidered, but here we believe that space–time-re-
versed EOT are more logical building blocks from
a forecast and simulation point of view. EOFs are
efficient, but there is no obvious way of linking EOFs
to the essence of forecasting, that is, to the time
derivative (other than by substitution into the gov-
erning equations and truncating somewhere). Spe-
cifically, by expressing an initial condition
T(s, t 5 0) into regular EOFs as

T(s, t 5 0) 5 b e (s),O m m
m

we have done little to find the time derivative of T.
Since we use only orthogonality in space anyway,
we can also express the inital state in terms of re-
versed EOT:

reducedT(s, t 5 0) 5 c a (s) 5 c T (s, tb )O Om m m m
m m

5 d T(s, tb )O m m
m

(where time tbm corresponds 1 to 1 to mode m),
which gives immediate access to the time derivative,
since the EOT are linked to realizations [T(s, tbm)],
and each flow has a known realization following. In
combination with constructed analog (van den Dool
1994), which seeks to project an initial condition
onto a nonorthogonal set of historical realizations,
that is, T(s, t 5 0) 5 S dmT(s, tbm), the use of EOT
appears to be useful in making it easier and less
ambiguous to find the weights dm. The ambiguity of
finding dm is discussed in van den Dool (1994), but
given cm it is easy to calculate dm. More in general,
the linkage to specific years is an enormous bounty,
because one now points (without further statistics)
to the time derivatives observed in these years, and
one can make an empirical–numerical prediction or
simulation model, which can run both backward and
forward in time.

2) Other variables and levels. One can easily include
other levels; that is, the s in T(s, t) would run both
in horizontal and vertical space. Some kind of a
priori data treatment like standardization to place
levels on equal footing needs to be addressed. Add-
ing more variables (T, wind components, surface
pressure) is equally doable, as long as the relative
units make sense to the researcher.

3) Special CCA.
(a) We have presented EOT (special EOF) in sec-

tion 2 as a stepwise linear regression where T(s, t)
is both the predictor and the predictand. However,
if the predictor is denoted as Z(s, t) and the predic-
tand is T(s, t), one can develop special canonical
correlation analysis (SCCA); that is, find that point
sb in the Z field such that Z(sb, t) explains the most
of the variance of T(s, t) combined over all s. The
regression of Z(sb, t) against Z(s, t) on the one hand
and against T(s, t) on the other yields the first pair
of canonical patterns. Z(sb, t) is the single time se-
ries. Substituting Z(s, t) 5 T(s, t), one can see that
EOT is ‘‘SCCA onto itself,’’ likewise regular EOF
is self-CCA.

(b) Another route to CCA is to consider more
than one point sb at the same time. In EOT we have
one point (sb) on the predictor side and a whole field
on the predictand side. One can ask which linear
combination of two base points in Z will explain the
most of the whole field T(s, t). Next is three points
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and ultimately a linear combination of all points in
Z to explain the field T(s, t). This is a route to clas-
sical CCA.

4) Climate analysis. Knowing the N points in space that
are the most efficient in explaining, say, 95% of the
variance of all other points would seem to provide
a rationale for a global climate analysis system that
requires no more than N optimally situated obser-
vations (without error). Here N may not be all that
large (on the order of a few hundred at most).

(a) Retroactive analysis: Assuming that N is only
a few hundred, one could consider a reanalysis back
to 1850 or so, based on surface data (monthly pres-
sure and temperature) alone. Here one forces those
points in where surface observations have been made
without interruptions from the beginning to first de-
rive the N modes from modern multilevel multivar-
iable data [say 1950–present as provided by Kalnay
et al. (1996)], and then reconstruct the 3D multi-
variable fields in the pre-1950 era as far back as one
can go with just surface data. That such an approach
might work is clear from Klein and Dai (1998), who
had considerable success with what they called re-
verse specification.

(b) Climate observation system: Knowing the N
points in space that explain, say, 95% of the variance
of all other points would seem to provide a rationale
as to where we treasure the observations most, where
we would like to continue to have time series, or to
make a case to start time series now. A case in point
is the base point of the PNA at 458N, 1608W. Is it
not peculiar that, as of 1999, we have only a few
surface observations and satellite and airplane wind
data (at 200 mb) but no vertical soundings (other
than satellite retrievals) in an area that gives us (be-
lieving the gridded analysis) nearly the most ex-
plained variance (in midtropospheric height) for the
entire Northern Hemisphere domain? Of course, the
optimal sites would have to consider temperature,
winds, humidity, surface pressure, and so on, com-
bined, and may be seasonally dependent.
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APPENDIX

An Iteration of EOT toward EOF

EOT places 100% faith in time series at successive
base points sb, even though there must be some obser-
vational and analysis error. This concern can be ad-
dressed in various ad hoc ways, but here we mention a
method of iteration following section 2d. The proposed

procedure is inspired by the way teleconnection indices
are (or perhaps should be) constructed. Referring to Fig.
6’s upper-right rendition of the PNA pattern, the tele-
connection index according to EOT is just T(sb, t),
where sb 5 458N, 1608W. However, Wallace and Gutzler
(1981) define the PNA index as an average of T(s, t) at
the four major centers, that is, near Hawaii, the North
Pacific, Canada, and the Southeast United States, where
the even points enter as 2T(s, t). This definition already
implies the kind of smoothing we are seeking here. Wal-
lace and Gutzler (1981) express hesitation as to what
the weight should be for the four points. In a way one
would want to use the other three locations, at any given
time, to specify what 458N, 1608W should be, and av-
erage these three specifications with the observation as
an amended version of a1(t). In the EOT (normal setup)
context the most logical field of weights would be pro-
portional to e1(s); that is, given the spatial pattern e1(s)
(and no more) from EOT as first guess one can calculate
a new a1(t) as

a (t) 5 e (s)T(s, t) e (s)e (s) (A1a)O O1 1 1 1@
s s

followed by recalculation of e1(s) given the latest a1(t)

e (s) 5 a (t)T(s, t) a (t)a (t). (A1b)O O1 1 1 1@
t t

We applied this to dataset 1 and found that the corre-
lation of 1.0 in west Kentucky (Fig. 2 top) gets lowered
to about 0.97 and some surrounding and far away values
are adjusted a little. One can also start from a time series
and enter (A1b) first. In doing so, patterns emerge more
smooth than the ones shown in Fig. 3. In Fig. 7 one
would no longer see holes drilled at the successive sbs
because some ‘‘noise’’ up to 10 units is left behind.
Expressions (A1a) and (A1b) are the same as (2a) and
(2b), but written for mode 1 alone. If one loops around
(A1a) and (A1b) for a few more iterations, starting from
EOT’s first guess e1(s), the EOT solution converges to-
ward regular EOFs, the modes become orthogonal in
both time and space and somewhat more variance gets
explained. In the few examples studied here, one or two
iterations was enough to achieve most of the change
one will get when convergence is reached. In a way we
invented a recipe as to how one rotates EOTs back to
EOFs, after first presenting a recipe that yields EOT
(close to rotated EOFs) in one single and simple cal-
culation. One can apply the iteration for each mode in
order 1, 2, etc., with the understanding that when cal-
culating the mth mode T(s, t) is the dataset reduced by
subtracting the m 2 1 previous modes out. The EOFs
need not come out in order of EV. As an aside, we
suspect that one can get EOFs out of (A1a) and (A1b)
starting from rather arbitrary fields (like the observed
fields), that is, without calculating any correlation. The
only question for a given initial guess: to which EOF
do we converge?
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